||||||||||||||||||||||||||||||||||||l|l|l|l|l|l|l|l|l|

Question Paper Code : X 20389

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Second Semester
Computer Science and Engineering CS 6201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
(Common to Information Technology)
(Regulations 2013)
(Common to PTCS 6201 - Digital Principles and System Design for B.E. (Part-Time) - Computer Science and Engineering - First Semester (Regulations 2014)) Time : Three Hours Maximum : 100 Marks

Answer ALL questions
PART - A
(10×2=20 Marks)

1. Convert (126) ${ }_{10}$ to octal number and binary number.
2. Write short notes on weighted binary codes.
3. Implement a full adder with 4×1 Multiplexer.
4. Write the Data flow description of a 4 -bit Comparator.
5. State the excitation table of JK-Flip Flop.
6. A seven bit Hamming code is received as 1111110 . What is the correct code ?
7. When do race conditions occur ?
8. Define merger graph.
9. List the major differences between PLA and PAL.
10. What is memory decoding?
PART - B
11. a) Simplify the following Boolean expression in
i) Sum-of-product
ii) Product-of-sum using Karnaugh map

$$
\begin{equation*}
\mathrm{AC}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{CD}+\mathrm{ABCD} \tag{16}
\end{equation*}
$$

(OR)
b) i) Express the following function in sum of min-terms and product of max-terms: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+\mathrm{yz}$.
ii) Convert the following logic system into NAND gates only.

12. a) Design a full adder with inputs x, y, z and two outputs S and C. The circuits performs $\mathrm{x}+\mathrm{y}+\mathrm{z}, \mathrm{z}$ is the input carry, C is the output carry and S is the sum.
(OR)
b) Design a logic circuit that accepts a 4-bit Grey Code and convert it into 4-bit binary code.
13. a) Design a sequence detector that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line and produces an output whenever this sequence is detected.
(OR)
b) Design a three bit synchronous counter with T flip flop and draw the diagram.
14. a) Explain the analysis and design procedures of synchronous sequential circuits.
(OR)
b) With necessary example and diagram, explain the concept of reduction of state and flow tables.
15. a) Design a 16 bit RAM array ($4 \times 4 \mathrm{RAM}$) and explain the operation.
(OR)
b) Explain the following :
i) ASIC
ii) Field Programmable Gate Array.

